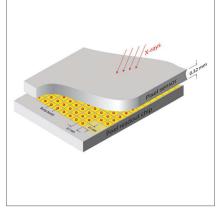
SmartLab

Automated multipurpose X-ray diffractometer

Rigaku's flagship X-ray diffractometer

Leading-edge hybrid pixel array detector

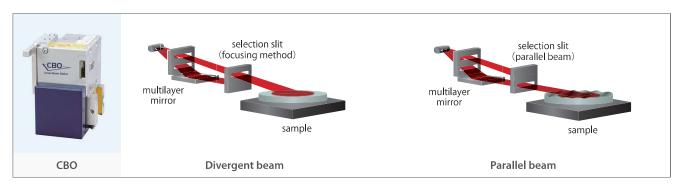


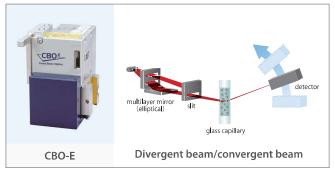
- Supports 0D, 1D and 2D measurement modes
- Excellent energy resolution to suppress XRF
- Keeps background noise to an absolute minimum
- Wide dynamic range
- Shutterless measurement
- Maintenance free

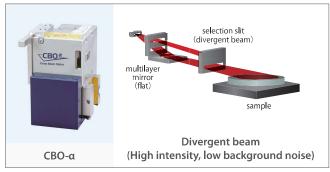
Active area	2,984 mm ² (77.5×38.5 mm)
Pixel size	100 μm × 100 μm
Number of pixels	775 × 385 = 298,375 pixels
Global count rate	>2.9 × 10 ¹¹ (>1×10 ⁶ cps/pixe l)
Efficiencies	Cr, Co, Cu: ~99% Mo: ~38%
Energy resolution	40% better than previous type

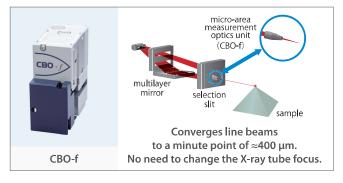
Fully compatible with 5-axis goniometer design

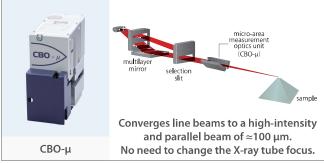
Hybrid pixel array detector (HPAD) design




Shutterless high-speed in-situ measurement


 $^{^*}$ This product was jointly developed by Department of Measurement and Electronics, AGH University of Science and Technology (Poland) and Rigaku Corporation.


Optical configurations for various applications


CBO (Cross Beam Optics)

Detectors

1D semiconductor detector D/tex Ultra250/250HE		
Active area	384 mm ² (19.2×20 mm)	
Spatial resolution	75 μm	
Global count rate	$2.5 \times 10^{8} (1 \times 10^{6} \text{cps/pixel})$	
Efficiencies	Cr, Co, Cu: ~99% Mo: ~40%, ~70% (250 HE)	

Multidimensional semiconductor detector HyPix-400*		
Active area	369 mm² (9.6×38.5 mm)	
Pixel size	100 μm × 100 μm	
Global count rate	>3.7 × 10 ¹⁰ cps (>1×10 ⁶ cps/pixel)	
Efficiencies	Cr, Co, Cu: ~99% Mo: ~38%	

^{*}This product was jointly developed by Department of Measurement and Electronics, AGH University of Science and Technology (Poland) and Rigaku Corporation.

CBO-Auto: Fully automatic switch between reflection and transmission optics and geometries

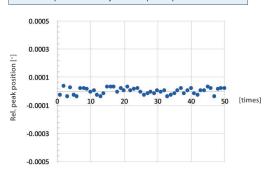
Reflection mode

The optimal measurement method depends on the type of sample or the application.

The Bragg-Brentano focusing (reflection mode) is the standard measurement method for generic powder samples. For samples with specific orientation or large grains (i.e., powder, solid, or films), the transmission method is the optimal approach.

SmartLab provides fully automatic switching between the reflection and transmission methods.

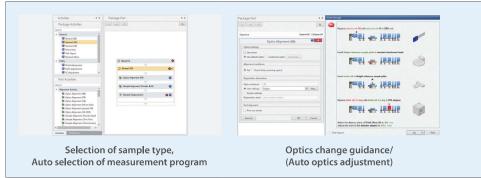
CBO-Auto		
Ts axis	Automatic control	
Optics	CBO-Auto (Cu) / CBO-Auto (Mo)	
Sample stage	Reflection/transmission ASC-6	


Transmission mode

High-precision goniometer with optical encoders

Encoder controlled high-precision goniometer		
Туре	Vertical goniometer with sample horizontal mount	
Goniometer radius	300 mm (0D, 1D), 150 - 300 mm (2D)	
Minimum step size	0.0001°	

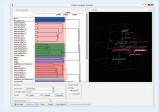
Reproducibility of the peak positions



Peak position stability after 50 times repeat of 2θ - ω scan or 004 diffraction of silicon single crystal substrate. Distribution is within the range of reference accuracy \pm 0.00004 $^{\circ}$.

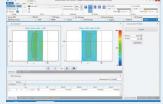
SmartLab Studio II software suite

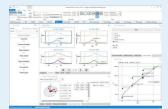
SmartLab Studio II is an integrated software platform with all functions from measurement to analysis.



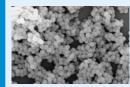
Typical applications

- Phase identification
- Quantification
- Crystallite size and distortion
- Precise lattice parameter
 determination
- Percent crystallinity
- Indexing
- Structural determination
- Precise crystalline structure

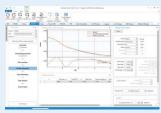



Stress

Powder

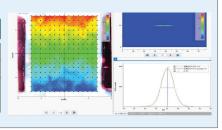


- Sin²ψ method
- 2D method
- Multiple-HKL method



Small Angle Scattering (SAXS)

- Grain size distribution
- Pore size distribution
- Long period



Micro area measurement

Specifications of beam size		
Collimator optics	50 μm to 1 mm	
CBO-f	400 μm	
СВО-µ	100 μm	
No need to change X-ray tube focus		

